Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
نویسندگان
چکیده
Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu.GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNA(Phe) is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNA(Phe) is not followed by release of EF-Tu.GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNA(Phe) to the poly(U).ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same K(m) for GTP as the one dependent on Phe-tRNA(Phe) and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNA(Phe), but not tRNA(Phe) or Ac-Phe-tRNA(Phe), stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components.
منابع مشابه
Conformational Change of Elongation Factor Tu (EF-Tu) Induced by Antibiotic Binding CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN EF-TuzGDP AND AURODOX*
Aurodox is a member of the family of kirromycin antibiotics, which inhibit protein biosynthesis by binding to elongation factor Tu (EF-Tu). We have determined the crystal structure of the 1:1:1 complex of Thermus thermophilus EF-Tu with GDP and aurodox to 2.0-Å resolution. During its catalytic cycle, EF-Tu adopts two strikingly different conformations depending on the nucleotide bound: the GDP ...
متن کاملCross-linking of tRNA at two different sites of the elongation factor Tu.
Recently, we reported on the induction by kirromycin of two tRNA binding sites on elongation factor Tu. To obtain independent information on the existence of these two sites and to characterize them further, 3' oxidized tRNA was cross-linked to elongation factor Tu by [3H]borohydride reduction. Specific cross-linking occurred exclusively in the presence of kirromycin. In the case of elongation ...
متن کاملConformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu.GDP and aurodox.
Aurodox is a member of the family of kirromycin antibiotics, which inhibit protein biosynthesis by binding to elongation factor Tu (EF-Tu). We have determined the crystal structure of the 1:1:1 complex of Thermus thermophilus EF-Tu with GDP and aurodox to 2.0-A resolution. During its catalytic cycle, EF-Tu adopts two strikingly different conformations depending on the nucleotide bound: the GDP ...
متن کاملInhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL 62,879 and efrotomycin.
MDL 62,879 (formerly GE 2270 A) is a novel antibiotic active against Gram-positive bacteria by inhibiting protein synthesis. MDL 62,879 is not active against Gram-negative bacteria, but inhibits cell-free protein synthesis in extracts from Escherichia coli, and shows a high binding affinity for its elongation factor Tu (EF-Tu). We prepared ribosomes and protein-synthesis elongation factors from...
متن کاملInteraction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation.
During protein synthesis, translation elongation factor Tu (Ef-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. The activity of Ef-Tu is dependent on its interaction with GTP. Posttranslational modifications, such as phosphorylation, are known to regulate the activity of Ef-Tu in several prokaryotes. Although a study of the Myc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 71 12 شماره
صفحات -
تاریخ انتشار 1974